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More general and stronger estimations of bounds for the fundamental functions
of Hermite interpolation of higher order on an arbitrary system of nodes are given.
Based on this result conditions for convergence of Hermite interpolation and Hermite�
Feje� r-type interpolation on an arbitrary system of nodes as well as Gru� nwald type
theorems are essentially simplified and improved. � 2000 Academic Press

1. INTRODUCTION

Let n # N (n�2), mkn # N (k=1, 2, ..., n, n=2, 3, ...), and

X :=[x1n , x2n , ..., xnn], 1�x1n>x2n> } } } >xnn�&1. (1.1)

In what follows, mkn , xkn , ... will be denoted by mk , xk , ..., respectively.
Throughout this paper let N :=Nn :=�n

k=1 mkn&1 and m :=supn�2

max1�k�n mkn<+�. Denote by PN the set of polynomials of degree at
most N and by Ajk the fundamental polynomials for Hermite interpolation,
i.e., Ajk # PN satisfy

A ( p)
jk (xq)=$ jp$kq , p=0, 1, ..., mq&1, j=0, 1, ..., mk&1,

q, k=1, 2, ..., n. (1.2)

The Hermite interpolation of f # Cm&1[&1, 1] is given by

H*nm( f, x)= :
n

k=1

:
mk&1

j=0

f ( j)(xk) A jk(x)
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and Hermite�Feje� r interpolation for f # C[&1, 1] is given by

Hnm( f, x)= :
n

k=1

f (xk) A0k(x).

To give an explicit formula for Ajk set

Lk(x)= `
n

q=1, q{k \
x&xq

xk&xq +
mq

, k=1, 2, ..., n,

b&k=
1
&!

[Lk(x)&1] (&)
x=xk

, &=0, 1, ..., mk&1, k=1, 2, ..., n, (1.3)

Bjk(x)= :
mk& j&1

&=0

b&k(x&xk)&, j=0, 1, ..., mk&1, k=1, 2, ..., n. (1.4)

Then by the same argument as in [10, Lemma 1] we have

Ajk(x)=
1
j!

(x&xk) j Bjk(x) Lk(x), j=0, 1, ..., mk&1, k=1, 2, ..., n.

(1.5)

The most interesting special case is mk #m. In this case we have the simple
formulas for k=1, 2, ..., n

Lk(x)=lk(x)m,

where

lk(x)=
|n(x)

|$n(xk)(x&xk)
, |n(x)=(x&x1)(x&x2) } } } (x&xn).

Although there have been many papers on Hermite interpolation of
higher order (cf. [12] and its references), almost all of them discuss only
interpolation based on the special system of nodes, say, zeros of Jacobi
polynomials. However, only recently, Szabados [10] gives a very impor-
tant result dealing with the Hermite interpolation of higher order on
general nodes (see Lemma A below). It provides a deep estimation for the
fundamental polynomials; based on this estimation a general Faber-type
theorem (see Theorem B below) is proved and other applications are
obtained [7�9, 13]; meanwhile its technique of proof is nice and suitable
to other cases. The first aim of this paper is to give more general and
stronger estimations of bounds for the fundamental functions of Hermite
interpolation of higher order on an arbitrary system of nodes using many
ideas of [10] in Section 2. This result will play a crucial role in the theory
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of Hermite interpolation and will make it possible to extend many impor-
tant results previously obtained for Lagrange interpolation (m=1) and
classical Hermite�Feje� r interpolation (m=2) to Hermite interpolation of
higher order (m�3). As applications of this result, the second aim of this
paper is to provide general and powerful criteria of convergence of Hermite
interpolation and Hermite�Feje� r-type interpolation of higher order on an
arbitrary system of nodes in Sections 3 and 4, respectively. In the last
section essentially simplified and improved Gru� nwald-type theorems are
given.

2. BASIC THEOREMS

The proof of Theorem 2.1 below follows the line given by Szabados [10]
but needs to use Birkhoff interpolation. For convenience we state some
knowledge of Birkhoff interpolation [4, pp. 2�10]. A matrix E=[eqp]n

q=1, N
p=0

is called a normal interpolation matrix if its elements eqp are 0 or 1 and if
the number of 1's in E is equal to N+1, |E|=� eqp=N+1. Here we do
not allow empty rows, i.e., in each q, 1�q�n, at least one eqp is not zero.
A Birkhoff interpolation problem E, X (with respect to PN) is, given a set
of data yqp (defined for eqp=1), to determine a polynomial P # PN (if any)
such that

P( p)(xq)= ypq , eqp=1, eqp # E. (1.6)

The pair E, X is called regular if the system of Eqs. (1.6) has a unique
solution P=0 for yqp #0. A row q of the matrix E is said to be Hermitian
if for some r, eqp=1 for p<r and eqp=0 for p�r. A matrix E is said to
be Hermitian if it has only Hermitian rows.

For normal matrices the condition

:
s

p=0

:
n

q=1

eqp�s+1, s=0, 1, ..., N

is called the Po� lya condition. A sequence of 1's of the q th row of E is sup-
ported if that (q, p) is the position of the first 1 of the sequence implies that
there exist two 1's: eq1 , p1

=eq2 , p2
=1 with q1<q<q2 , p1<p, and p2<p.

Then we have

Theorem A [4, Theorem 1.5, p. 10]. A normal interpolation matrix is
regular for algebraic interpolation if its satisfies the Po� lya condition and
contains no odd supported sequences.
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In the following c, c1 , c1*, ... will stand for positive constants depending
only on m, unless otherwise indicated; their value may be different at
different occurrences, even in subsequent formulas. Recently, Szabados
proved an important result in which d� 1=x1&x2 , d� n=xn&1&xn , d� k=
max[ |xk&xk&1|, |xk&xk+1|], 2�k�n&1 and mkn #m means mkn=m,
k=1, 2, ..., n, n=2, 3, ... .

Lemma A [10, Lemma 3]. Let mkn #m. If m& j is odd then

Bjk(x)�c1* \x&xk

d� k
+

m& j&1

, x # R, 0� j�m&1, 1�k�n. (2.1)

This lemma plays an important role in proving the following general
Faber-type theorem in which & }& denotes the uniform norm.

Theorem B [10, Theorem 1]. Let mkn #m. Then

" :
n

k=1

|Ajk |"�{c2*n& j ln n,
c3*n& j,

if m& j is odd,
if m& j is even,

0� j�m&1. (2.2)

Moreover, the order is the best possible and is attained by the Chebyshev
nodes:

xk=cos
2k&1

2n
?, k=1, 2, ..., n. (2.3)

Meanwhile, Lemma A may be applicable to estimation of lower bounds
of Lebesgue function-type sums [9, 13] and investigation of mean
convergence for Hermite interpolation [8], as well as determination of
asymptotic behavior for Cotes numbers of Gauss�Tura� n quadrature
formulas [7].

To get further and more applications we need to extend and to
strengthen this estimation. To this end let

dk=max[ |xk&xk&1|, |xk&xk+1|], k=1, 2, ..., n,

and

R, 2�k�n&1,

I={(&�, 1], k=1,

[&1, +�), k=n.

We give two lemmas before stating the main result.
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Lemma 2.1. Let E be an n_(N+1) (n�4) Hermitian matrix with the
lengths m1 , m2 , ..., mn . Let k, 2�k�n&1, be fixed and 0� j<i<mk ,
where both mk&i and mk& j are odd. Let a matrix E* be obtained from E
by omitting the two 1's in the positions (k, j) and (k, i). Assume that a
polynomial G is annihilated by the pair E*, X and satisfies

�G=|E*|&1. (2.4)

Then

|G( j)(xk)|�
j !
i !

d i& j
k |G(i)(xk)|. (2.5)

Proof. We write the Taylor expression of G about x=xk

G(x)=c0(x&xk) j+c1(x&xk) i+(x&xk)mk D(x), D # PN , (2.6)

where

c0=
G( j)(xk)

j !
, c1=

G(i)(xk)
i !

. (2.7)

Thus

H(x) :=
G(x)

c0(x&xk) j=1+
c1

c0

(x&xk) i& j+
1
c0

(x&xk)mk& j D(x) (2.8)

and

H$(x)=(x&xk) i& j&1 F(x), (2.9)

where

F(x)=(i& j)
c1

c0

+(x&xk)mk&i D1(x), D1 # PN . (2.10)

Denote by �P the exact degree of P # PN and by Z(P, 2) the number of
zeros of P in 2 counting multiplicities. Let 2k=(xk+1 , xk&1) and let (a, b)
be the largest open interval such that (a, b)#2k and Z(F, (a, b))=0. We
claim

Z(F, 2k)=0 (2.11)

and

Z(F $, (a, b))�mk&i. (2.12)
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In fact, by (2.8) we see that

H(xq)=H$(xq)= } } } =H (mq&1)(xq)=0, q{k, 1�q�n, (2.13)

and

H$(xk)= } } } =H (i& j&1)(xk)=H (i& j+1)(xk)= } } }

=H (mk& j&1)(xk)=0. (2.14)

By Rolle's theorem we obtain r�n&3 zeros z1 , ..., zr (outside 2k) of H$(x)
from n&2 intervals given by zeros x1 , ..., xk&1 , xk+1 , ..., xn of H(x):

H$(zq)=0, q=1, ..., r. (2.15)

Let E$ be the interpolation matrix for H$ corresponding to (2.13)�(2.15),
i.e., eqp=1 for (H$) ( p)(xq)=0 and eqp=0 otherwise. Then H$ is annihilated
by the pair E$, X$=X _ [z1 , ..., zr]"[xq : mq=1] (the nodes xq in the last
subset do not appear in (2.13)), which by Theorem A is regular (since
mk&i&1 is even). So we must have |E$|��H$�N& j&3. But

|E$|= :
q{k

(mq&1)+(mk& j&2)+r=N& j&n+r.

Hence r�n&3. Recalling r�n&3, we get

r=n&3 (2.16)

and

|E$|=�H$=N& j&3. (2.17)

Equation (2.11) follows from (2.17) and (2.9), for otherwise H$=0 would
occur, a contradiction. By (2.9), (2.14), and (2.17) we also get

Z(F, R"(a, b))=|E$|&(mk& j&2)=N&mk&1

and hence Z(F $, R"(a, b))�N&mk&3. Since �F $�N&i&3, we have
Z(F $, (a, b))�mk&i. This proves (2.11) and (2.12).

Noticing n�4, by the definition of the interval (a, b) we conclude either
F(a)=0 or F(b)=0. Assume without loss of generality that F(b)=0. Since
by (2.9)

F $(xk)= } } } =F (mk&i&1)(xk)=0, (2.18)
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according to (2.12) we can conclude that in the interval (a, b) the function
F $ has either a unique zero y of odd multiplicities or no zero of odd
multiplicities. In the latter case we agree y=&�. Now put

$k={(xk+1 , xk),
(xk , xk&1),

y�xk ,
y<xk .

Then F is monotone in $k and hence by (2.10) and (2.18) we have

|F(x)|�|F(xk)|=(i& j) } c1

c0 }, x # $k .

Thus by (2.8), (2.9), and (2.7)

1= } |$k

H$(x) dx }= } |$k

(x&xk) i& j&1 F(x) dx }
�(i& j) } c1

c0 } |$k

|x&xk | i& j&1 dx

= } c1

c0 } |$k | i& j� } c1

c0 } d i& j
k =

j ! d i& j
k |G(i)(xk)|

i! |G( j)(xk)|
,

which is equivalent to (2.5). K

Lemma 2.2. Let k, 1�k�n, and

ajk= :
i{k

mi

(x i&xk) j , j�1. (2.19)

Then

bjk=
1
j

:
j

i=1

aik bj&i, k , j�1. (2.20)

Proof. Use the same argument as that of Lemma 2 of [10]. K

The first main result of this section is as follows.

Theorem 2.1. If for a fixed n, mk& j is odd and j<i<mk , 1�k�n,
then with c=1

Bjk(x)�cd j&i
k |x&xk | i& j |B ik(x)|, x # I, (2.21)

|Ajk(x)|�c
i !
j !

d j&i
k |Aik(x)|, x # I, (2.22)
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and

bmk& j&1, k�cd j&i
k |bmk&i&1, k |. (2.23)

Moreover, both the order d j&i
k and the constant c=1 in (2.21)�(2.23) are

the best possible.

Proof. We begin by proving that

bmk& j&1, k>0; Bjk(x)>0, x # R, (2.24)

and

(&1)& b&1 >0, &=0, 1, ..., m1&1;

b&n>0, &=0, 1, ..., mn&1. (2.25)

Let E=Ejk=[eqp]n
q=1,

N&1
p=0 be a normal matrix defined by eqp=1 for

A( p)
jk (xq)=0, p�mq&1, q=1, 2, ..., n, and eqp=0 otherwise. Clearly, accord-

ing to (1.2) Ajk is annihilated by the pair E, X. That is, A ( p)
jk (xq)=0,

eqp=1, eqp # E. Since E satisfies the Po� lya condition and contains no odd
supported sequences (mk& j&1 is even), by Theorem A the pair E, X is
regular. If bmk& j&1, k=0 then �Ajk�N&1 and Ajk=0, a contradiction.
Moreover, suppose to the contrary that Bjk(z)=0 for some z # R. If z=xt

(of course t{k) then we add a 1 to the position (t, mt) in E and put
X$=X; if z � X we add a new Lagrangian row (1, 0, ..., 0) and put
X$=X _ [z]; let E$ be obtained from E by the above process. Again, Ajk

is annihilated by the pair E$, X$ and the pair E$, X$ is also regular. Thus
it leads to a contradiction Ajk=0. So (2.24) follows.

Since (2.24) implies (2.25) for the case when mk&& is odd, we have only
to discuss the case when mk&& is even. By the same argument we also con-
clude that for k=1 and k=n if mk&& is even then bmk&&&1, k {0 and
B&k(x) has exactly one zero which is in (x1 , +�) for k=1 and in
(&�, xn) for k=n, respectively. Since B&k(xk)=1, we see that
bm1&&&1, 1<0 and bmn&&&1, n>0, which by (2.24) yields (2.25).

In the following proof we separate two cases.

Case 1. mk&i is odd. Denote

R, 2�k�n&1,

I$ :={(&�, x1+d1], k=1,

[xn&dn , +�), k=n.
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To prove (2.21) put (since x1=1 or xn=&1 may occur, here we need to
use I$ instead of I )

c :=cijk=sup[d : Bjk(x)�d(x&xk) i& j Bik(x), x # I$].

Of course I/I$,

C(x) :=Cjk(x)=Bjk(x)&c(x&xk) i& j Bik(x)�0, x # I$,

and by (1.5)

G(x) :=C(x) Lk(x)
(x&xk) j

j !
=A jk(x)&

ci !
j !

Aik(x). (2.26)

Claim 1. Z(C)�2.
Suppose to the contrary that the polynomial C has three zeros, say,

:1=:2>:3 : C(:1)=C$(:1)=C(:3)=0. Hence G(:1)=G$(:1)=G(:3)=0.
Then according to Rolle's theorem Z(G(i+1))=|E|&1&2+3&(i+1)=
|E|&i&1 and �G(i+1)=�G&(i+1)=|E|&i&2<Z(G(i+1)), a contradic-
tion. This proves Claim 1.

Claim 2. One and only one of the following three cases may occur:

Case A. The polynomial C with �C=�Bjk has two zeros :1�:2 , which
satisfy I$ & [:1 , :2]{< and

{C(:1)=C$(:1)=0,
C(:1)=C(:2)=0,

:1=:2 ,
:1 {:2 ;

(2.27)

Besides, :1>x1 for k=1 and :2<xn for k=n.

Case B. The polynomial C with �C=�B jk&1 has a unique simple zero
:1=x1+d1 or :1=xn&dn ;

Case C. The polynomial C with �C=�Bjk&2 has no zero and 2�k�
n&1.

In fact, if Z(C)=2, denoting the zeros of C by :1 , :2 , :1�:2 , then
I$ & [:1 , :2]{< and (2.27) holds. By the same argument as that of
Claim 1 we can obtain the last conclusion. This proves Case A. If Z(C)=1,
then Z(C, I$"(I$)%)=Z(C, I$)&Z(C, (I$)%)=1 ((I$)% denotes the set of
interior points of I$) and, recalling that �Bjk is even, �C��Bjk&1. On the
other hand, we must have �C��Bjk&1, for otherwise by a similar argu-
ment as that of Claim 1 it would lead to a contradiction. This proves
Case B. If Z(C)=0, then �C��Bjk&2 and we also must have �C�
�Bjk&2 by the same argument as above. Furthermore we have 2�k�
n&1, for otherwise it again leads to a contradiction. This proves Claim 2.
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According to Claim 2 for Case A

{G(:1)=G$(:1)=0,
G(:1)=G(:2)=0,

:1=:2 ,
:1 {:2 ,

(2.28)

and for Case B

G(:1)=0, :1=x1+d1 or :1=xn&dn . (2.29)

Let Ekji be obtained from E by omitting its two 1's in the positions (k, j)
and (k, i). Let E*=Ekji for Case C; let E* be obtained from Ekji by adding
two 1's corresponding to the zeros in (2.28) for Case A with :1 {:2 or a
1 corresponding to the zero in (2.29) for Case B, either in a new
Lagrangian row (1, 0, ..., 0) or as an additional 1 in an old row, just after
the sequence; otherwise we add a new row (1, 1, 0, ..., 0) if :1=:2 � X and
two additional 1's in the + th row if :1=:2=x+ , just after the sequence.
Clearly, the pair E*, X*=X _ [:1 , :2] :=[x1*, ..., xn*] with x1*> } } } >xn*
annihilates G. If we put \=2, 1, 0 for Cases A, B, C, respectively, then
�G=|E|&1&(2&\)=|E|+\&3 and |E*|=|E|+\&2. Thus �G=|E*|
&1. Then we can apply Lemma 2.1 to the pair E*, X* and the polynomial
G. Since X*=X _ [:1 , :2]=[x1* , ..., xn*], there is an index k* such that
x*k*=xk . We get

1=G( j)(xk)=G( j)(x*k*)�
j !(d*k*) i& j

i !
|G(i)(x*k*)|

=
j !(d*k*) i& j

i !
|G(i)(xk)|=

j !(d*k*) i& j

i !
}
ci !
j !

=c(d*k*) i& j, (2.30)

where

d*k*=max[ |x*k*&x*k*&1|, |x*k*&x*k*+1|].

If we can show

d*k*�dk , 1�k�n, (2.31)

then (2.30) implies c�(d*k*) j&i�d j&i
k , which proves (2.21). Let us show

(2.31). For 2�k�n&1 since X*=X _ [:1 , :2] with :1=:2 , we see that
d*k*=dk if :1 � [xk+1 , xk&1] and d*k*�dk otherwise. For k=1 only
Cases A and B can occur. In this case Claim 2 says :1 # (x1 , x1+d1]. Hence

d*1*=max[ |x1&x2 |, |x1&:1|]�max[ |x1&x2 | , d1]=d1 .

Similarly, we can show d*n*�dn .
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Case 2. mk&i is even. In this case it suffices to show (2.21) for
i= j+1, since validity of (2.21) for i= j+1 by the conclusion of Case 1
implies validity of (2.21) for i� j+3:

Bjk(x)�\x&xk

dk +
i& j&1

Bi&1, k(x)� }x&xk

dk }
i& j

|Bik(x)|.

Now let us prove (2.21) for i= j+1. To this end put

Lk*(x)=Lk(x) \ x&xr

xk&xr +
&1

, r{k.

Thus

b*&k=
1
& !

[Lk*(x)&1] (&)
x=xk

=b&k+
1

xk&xr
b&&1, k , &�1. (2.32)

Then by (2.24)

B*jk(x)= :
mk& j&1

&=0

b*&k(x&xk)&=Bjk(x)+
x&xk

xk&xr
Bj+1, k(x)>0. (2.33)

For 2�k�n&1 substituting r=k\1 into (2.33) yields (2.21) with c=1.
Let k=1. Then (2.33) with r=2 gives only

Bj1(x)> &
x&x1

x1&x2

Bj+1, 1(x)

and it suffices to show

Bj1(x)>
x&x1

x1&x2

Bj+1, 1(x), x # I$n , (2.32)

since it coupled with the previous inequality implies

Bj1(x)> } x&x1

x1&x2

Bj+1, 1(x)}� }x&x1

d1

Bj+1, 1(x)} , x # I$n .

At the beginning of the proof we proved that Bj+1, 1(x) has exactly one
zero, say !, which must lie in (x1 , +�). Since Bj+1, 1(x1)=1, we see that
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Bj+1, 1(x)�0 for x�! and Bj+1, 1(x)<0 for x>!. Then (x&x1) Bj+1, 1(x)
�0 for x�x1 or x�! and (2.32) holds for these x. Now for
x # (x1 , min[!, x1+d� 1]) by (2.25) we have

Bj1(x)=bm1& j&1, 1(x&x1)m1& j&1+Bj+1, 1(x)

�Bj+1, 1(x)�
x&x1

d1

Bj+1, 1(x).

This proves (2.32) and (2.21) for k=1. Similarly we can prove (2.21) for
k=n.

This completes the proof of (2.21).
By (1.5) and (2.21)

|Ajk(x)|= } 1
j !

(x&xk) j Bjk(x) Lk(x)}
�

i !
j !

d j&i
k } 1i ! (x&xk) i Bik(x) Lk(x)}

=
i !
j !

d j&i
k |Aik(x)|.

This proves (2.22). Comparing the leading coefficients of both the sides of
(2.21) yields (2.23).

To prove the last conclusion it is enough to show the last conclusion for
(2.23), because (2.21) is equivalent to (2.22) and (2.21) implies (2.23).

To show that the order is the best possible let mkn #m and let the system
X of nodes be as follows, in which k, 1�k�n, is fixed:

xk&1=
1

2n2 , xk=0, xk+1=&
1
n2 , |xi |�

1
2

, |i&k|�2.

Then dk=1�n2,

} :
|i&k|�2

m
x j

i }�m2 j (n&2),

and

a jk = :
i{k

m
(xi&xk) j= :

i{k

m
x j

i

=m(2n2) j+m(&n2) j+ :
|i&k| �2

m
x j

i

tn2 j
td & j

k .
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Thus by (2.20) we obtain

bjk td & j
k td i& j

k bik , i> j�0.

This proves that the order of (2.23) is the best possible.
To show that the constant c=1 of (2.23) is the best possible. Let us

consider the system X of nodes (n=2p&1, p�3):

xp =0, xp&1=
1
p

, xp&2�
1
2

,

xp&k=&xp+k , k=1, 2, ..., p&1.

Besides we choose

mk={3, k= p,
1, k{ p.

Then by (2.19) and (2.20) a1p=0, b2p=(a2
1p+a2p)�2=a2p �2, and by (2.23)

c�d2
p b2p=

x2
p&1

2
:

i{ p

mi

(xi&xp)2=x2
p&1 :

p&1

i=1

1

x2
i

=1+x2
p&1 :

p&2

i=1

1
x2

i

�1+
4( p&2)

p2 � 1,

as p � �. This proves our conclusion. K

The second main result in this section is

Theorem 2.2. Let mkn #m�3. Then

Bm&3, k(x)� 1
2Bm&1, k(x)= 1

2 ,
(2.33)

Bm&3, k(x)�|Bm&2, k(x)|, x # R, 1�k�n,

and

|Am&1, k(x)|�|(x&xk)2 Am&3, k(x)|,
(2.34)

|Am&2, k(x)|�|(x&xk) Am&3, k(x)|, x # R, 1�k�n.

Proof. By (1.3) we have

b0k =1,

{ b1k=&ml$k(xk),

b2k= 1
2m(m+1) l$k(xk)2& 1

2 ml"k(xk).
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By a well-known result (cf. [11, p. 976])

l$k(xk)2&l"k(xk)= :
i{k

1
(xk&xi)

2>0 (2.35)

we have

b2k� 1
2m2l$k(xk)2.

Using a simple symbol y :=l$k(xk)(x&xk) by (1.4) we get

Bm&1, k(x)=1,

{Bm&2, k(x)=&my+1,

Bm&3, k(x)� 1
2m2y2&my+1.

Hence

Bm&3, k(x)& 1
2� 1

2 m2y2&my+ 1
2= 1

2 (my&1)2�0,

Bm&3, k(x)&Bm&2, k(x)� 1
2 m2y2�0,

Bm&3, k(x)+Bm&2, k(x)� 1
2 m2y2&2my+2= 1

2 (my&2)2�0,

which is equivalent to (2.33). Equation (2.34) follows directly from (2.33)
and (1.5). K

Lemma 2.3. Let mkn #m. Then

:
n

k=1

(x&xk) i A0k(x)

=i ! :
m&1

j=1

(&1) j+1

(i& j)!
:
n

k=1

(x&xk) i& j Ajk(x), 1�i�nm&1.

(2.36)

(We agree to replace 1�r! by 0 if r<0.)

Proof. We have the identity

x p= :
m&1

j=0

:
n

k=1

p !
( p& j)!

x p& j
k A jk(x), 0�p�mn&1. (2.37)
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Using (2.37) we obtain

:
m&1

j=0

(&1) j

(i& j)!
:
n

k=1

(x&xk) i& j Ajk(x)

= :
m&1

j=0

(&1) j

(i& j)!
:
n

k=1

A jk(x) :
i& j

p=0

(&1) p \i& j
p + xi& j& px p

k

= :
m&1

j=0

:
n

k=1

Ajk(x) :
i& j

p=0

(&1) p+ j

p !(i& j& p)!
x i& j& px p

k

= :
m&1

j=0

:
n

k=1

Ajk(x) :
i

p=0

(&1) p

( p& j)! (i& p)!
xi& px p& j

k

= :
i

p=0

(&1) p x i& p

p !(i& p)!
:

m&1

j=0

:
n

k=1

p !
( p& j)!

x p& j
k A jk(x)

=
xi

i !
:
i

p=0

(&1) p \ i
p+=0.

This is equivalent to (2.36). K

The last main result in this section is

Theorem 2.3. Let mkn #m be even. Then

:
n

k=1

(x&xk) A1k(x)= :
n

k=1

|(x&xk) A1k(x)|

� :
n

k=1

(x&xk)2 A0k(x), x # R. (2.38)

Proof. By (2.36), (1.5), and (2.24)

:
n

k=1

(x&xk)2 A0k(x)=2 :
n

k=1

[(x&xk) A1k(x)&A2k(x)]

= :
n

k=1

(x&xk)2 lk(x)m [2B1k(x)&B2k(x)]

� :
n

k=1

(x&xk)2 lk(x)m B1k(x)

= :
n

k=1

(x&xk) A1k(x)= :
n

k=1

|(x&xk) A1k(x)|.

63ON HERMITE INTERPOLATION



Here we use a fact

B1k(x)&B2k(x)=bm&2, k(x&xk)m&2�0, x # R, 1�k�n,

which follows from (2.24). K

3. CONVERGENCE OF HERMITE INTERPOLATION

Let

& f &* := max
0� j�m&1

& f ( j)&, f # Cm&1[&1, 1],

&H*nm& := sup
& f &*�1

&H*nm( f )&,

&Hnm& := sup
& f &�1

&Hnm( f )&.

It is well known that

&Hnm&=" :
n

k=1

|A0k |".
The first main result in this section is the following

Theorem 3.1. Let mkn #m{2. Then

&H*nm&�c &Hnm&. (3.1)

Proof. First let m be even. Then

&H*nm&� :
m&1

j=0

sup
& f &*�1 " :

n

k=1

f ( j)(xk) Ajk(x)" := :
m&1

j=0

Sj .

We separate the cases when j=0, 1� j�m&2, and j=m&1. Clearly,
S0�&Hnm&. For 1� j�m&2 by the mean value theorem for the
derivative

Sj = sup
& f &*�1 " :

n

k=1

[ f ( j)(x)&[ f ( j)(x)& f ( j)(xk)]] Ajk(x)"
= sup

& f &*�1 " :
n

k=1

[ f ( j)(x)& f ( j+1)(!k)(x&xk)] Ajk(x)"
�" :

n

k=1

Ajk "+" :
n

k=1

|(x&xk) Ajk(x)| ".
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But by (2.36)

" :
n

k=1

Ajk "=" :
j&1

i=0

(&1) i

( j&i)!
:
n

k=1

(x&xk) j&i Aik(x)".
We have that

" :
n

k=1

|(x&xk) j A0k(x)| "�2 j &Hnm&

and by (2.22), using the inequalities |x&xk |�2 and dk�2,

:
n

k=1

|(x&xk) j&i Aik(x)|�2 j&2 :
n

k=1

(x&xk) A1k(x), 1�i� j&1.

Thus

Sj�2 j &Hnm&+c " :
n

k=1

(x&xk) A1k(x)".
As for j=m&1 by (2.34) and (2.22)

Sm&1 �" :
n

k=1

|Am&1, k(x)|"�" :
n

k=1

(x&xk)2 Am&3, k(x)"
�2m&3 " :

n

k=1

(x&xk) A1k(x)".

At last by (2.38)

&H*nm&� :
m&2

j=0

2 j &Hnm&+c " :
n

k=1

(x&xk) A1k(x)"�c &Hnm&.

For odd m it suffices to apply (2.22). K

Since H*nm is a linear operator from Cm&1[&1, 1] to PN , as a direct
consequence of Theorem 3.1 by the Banach�Steinhaus theorem we state the
second main result in this section.

Theorem 3.2. Let mkn #m�4 be even. If

&Hnm&=" :
n

k=1

|A0k | "=m(1), (3.2)
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then

lim
n � �

&H*nm( f )& f &=0 (3.3)

holds for every f # Cm&1[&1, 1].

This result essentially simplifies to the following

Theorem C [6, Lemma 3]. Let mkn #m be even. If

" :
m&1

j=0

:
n

k=1

|A jk |"=m(1),

then (3.3) holds for all f # Cm&1[&1, 1].

It is still open whether or not Theorems 3.1 and 3.2 remain true for
mkn #2. Until now we have only found two possible answers to this
problem. The first is the following, which may be shown by the same
argument as that of Theorems 3.1 and 3.2.

Theorem 3.3. Let mkn #2. Then for f # C2[&1, 1]

sup
& f &�1, & f $&�1, & f "&�1

&H*n2( f )&�c3 &Hn2&. (3.4)

Moreover, if

&Hn2&=" :
n

k=1

|A0k |"=m(1), (3.5)

then

lim
n � �

&H*n2( f )& f &=0 (3.6)

holds for every f # C2[&1, 1].

To state the second answer we first formulate a general statement, which
is an estimation of the lower bound of &H*nm&.

Theorem 3.4. Let mkn #m. Then

&H*nm&�c " :
n

k=1

|Am&1, k | ". (3.7)

Proof. To prove (3.7) we need a result which may be deduced by the
same argument as that of [8, Lemma 2.5]:
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Lemma 3.1. Let r�0, n # N, and |=k |�1, k=1, 2, ..., n. Then there
exists a function f # C r[&1, 1] such that

{
f (r)(xk)==k , k=1, 2, ..., n,

(3.8)
f ( j)(xk)=0, k=1, 2, ..., n; j=0, 1, ..., r&1,

& f ( j)&�
2r[(2r+1)!]2

r ! [(r+1)!]2 , j=0, 1, ..., r.

Now to apply this lemma let r=m&1,

:
n

k=1

|Am&1, k(!)|=" :
n

k=1

|Am&1, k |", ! # [&1, 1],

and =k=sgn Am&1, k(!), k=1, 2, ..., n. For the function f given by
Lemma 3.1 according to (3.8)

&H*nm&�(& f &*)&1 &H*nm( f )&�c &H*nm( f )&=c " :
n

k=1

|Am&1, k |",

where

c=
(m&1)! (m !)2

2m&1[(2m&1)!]2 . K

Now we are able to state the second answer.

Theorem 3.5. Let mkn #2. Then

c4 " :
n

k=1

|A1k |"�&H*n2&�&Hn2&+" :
n

k=1

|A1k | ". (3.9)

Moreover,

&H*n2&�c2 &Hn2& (3.10)

if and only if

" :
n

k=1

|A1k | "�c7 &Hn2&. (3.11)

Proof. Equation (3.9) follows from (3.7) and the definition of &H*n2&.
The equivalence of (3.10) and (3.11) follows from (3.9). K
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4. CONVERGENCE OF HERMITE�FEJE� R-TYPE INTERPOLATION

Put

Rnm( f, x) :=|Hnm( f, x)& f (x)|,

rnm(x) :=Rnm( f1 , x)+Rnm( f2 , x), f i (x) :=xi, i=1, 2.

Lemma 4.1. Let Pk # Pn , k=1, 2, ..., M, and 1�y1>y2> } } } >yM�
&1. If

" :
M

k=1

|(x& yk) Pk(x)| "=+n (4.1)

and

:
M

k=1

|Pk( yj)|�&n , j=1, 2, ..., M, (4.2)

then

" :
M

k=1

|Pk | "�2(n2+n+&n). (4.3)

In particular, if M=1 and P1( y1)=0, | y1|<1, then

&P1&�
4n+n

(1& y2
1)1�2 .

Proof. Let

:
M

k=1

|Pk(!)|=wn :=" :
m

k=1

|Pk | ", ! # [&1, 1].

If |!& yk |�1�(2n2) holds for every k then

+n� :
M

k=1

|(!& yk) Pk(!)|�
wn

2n2 ,

which implies (4.3).
If |!& yj |<1�(2n2) holds for some j then with the notation

P(x)= :
M

k=1

[sgn Pk(!)] Pk(x)
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by the mean value theorem for the derivative and the Markov inequality

wn&&n �P(!)&P( yj)=P$(')(!& y j)

�n2 &P& |!& yj |�n2wn }
1

2n2=
1
2

wn .

Hence wn�2&n , which implies (4.3).
To prove the second conclusion let y1=cos % and !=cos { and choose

t=%+=?�(2n), where ==sgn({&%). It is enough to establish

|!& y1|�
sin %
4n

, (4.4)

because by (4.1) and (4.4)

+n�|(!& y1) P1(!)|�
sin %
4n

&P1&=
(1& y2

1)1�2

4n
&P1&.

To this end we need a theorem on Riesz [5] which says that if P # Pn

attains its absolute maximum in [&1, 1] at y=cos : then |:&%k |�?�(2n)
(k=1, 2, ..., n), where zk=cos %k (k=1, 2, ..., n) denote the roots of P(x).
Thus in the present case |{&%|�?�(2n) and hence

|!& y1|�|cos t&cos %|= } 2 sin
t+%

2
sin

t&%
2 }

= } 2 sin \%+
=?
4n+ sin

?
4n }� } 1n sin \%+

=?
4n+}

=
1
n } sin % cos

?
4n

+= cos % sin
?
4n }

�
1
n _

21�2

2
sin %&sin

?
4n&�

1
n _

21�2

2
sin %&

?
4n& .

If

sin %�
?

4n \21�2

2
&

1
4+

,

i.e.,

21�2

2
sin %&

?
4n

�
1
4

sin %,

then (4.4) follows.
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If

sin %<
?

4n \21�2

2
&

1
4+

,

then in this case sin %�2�n and hence

|!& y1|�|cos t&cos %|�|1&cos(t&%)|

� }1&cos
?
2n }=2 sin2 ?

4n
�

1
2n2�

sin %
4n

. K

Corollary 4.1. Let mkn #m. If

" :
n

k=1

(x&xk) A1k(x)"=+n , (4.5)

then

" :
n

k=1

|A1k | "�2m2n2+n . (4.6)

Proof. Since

:
n

k=1

|A1k(xj)|=0, j=1, 2, ..., n,

(4.6) directly follows from Lemma 4.1. K

Corollary 4.2. Let mkn #m be even. If

" :
n

k=1

|A0k | "=+n , (4.7)

then

" :
n

k=1

|A1k | "�8m2n2+n . (4.8)

Proof. By (2.38) and (4.7) we have

:
n

k=1

(x&xk) A1k(x)�4+n ,

which according to Corollary 4.1 gives (4.8). K
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The main result in this section is the following

Theorem 4.1. Let mkn #m be an even integer. Then for any P # Pmn&1

Rnm(P, x)�c &P&* {rnm(x)+
&rnm& ln10[n(1+&rnm&)]

n = . (4.9)

Furthermore, if

lim
n � �

&Hnm( f )& f&=0 (4.10)

holds for f =f i , i=1, 2, then (4.10) holds for every polynomial f.

Proof. First let us prove two claims.

Claim 1. We have the inequality

:
n

k=1

(x&xk) A1k(x)�2rnm(x), x # [&1, 1]. (4.11)

In fact,

:
n

k=1

(x&xk)2 A0k(x)=x2&2x :
n

k=1

xk A0k(x)+ :
n

k=1

x2
kA0k(x)

=2x _x& :
n

k=1

xkA0k(x)&&_x2& :
n

k=1

x2
kA0k(x)&

�2Rnm( f1 , x)+Rnm( f2 , x)�2rnm(x), (4.12)

which, coupled with (2.38), yields (4.11).

Claim 2. We have the estimation

:
|x&xk|<dk

d2
k |A1k(x)|�c3

&rnm& ln10[n(1+&rnm&)]
n

, x # [&1, 1].

(4.13)

In fact, by Lemma 4.1 it follows from (4.11) that

&A1k &�8
mn &rnm&

sin %k
(sin %k {0), k=1, 2, ..., n, (4.14)

and

&A1k &�4m2n2 &rnm&, k=1, 2, ..., n, (4.15)
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where xk=cos %k , k=1, 2, ..., n. Meanwhile by (4.11), (1.5), and (2.21)

2rnm(x)� :
n

k=1

(x&xk)2 B1k(x) lk(x)m�c1 :
n

k=1

(x&xk)m lk(x)m

dm&2
k

.

This implies

|(x&xk) lk(x)|�c4(&rnm& dm&2
k )1�m�c5 &rnm&1�m, k=1, 2, ..., n.

Again applying Lemma 4.1 gives

|lk(x)|�c6 n2 &rnm&1�m, k=1, 2, ..., n.

By a deep estimation of Erdo� s [2, Theorem 3] we obtain (%0=0, %n+1=?)

|%k+1&%k |�c7

(ln n) ln(n &rnm &)
n

, k=0, 1, ..., n,

and the maximum number Kn of the set [k: |xk&x|<dk] when x runs
over the interval [&1, 1] satisfies

Kn�c8(ln n) ln(n &rnm&). (4.16)

Since for 1�k�n&1

|cos %k+1&cos %k |

= } 2 sin \%k+
%k+1&%k

2 + sin
%k+1&%k

2 }
� }(%k+1&%k) sin \%k+

%k+1&%k

2 +}
= }(%k+1&%k) \sin %k cos

%k+1&%k

2
+cos %k sin

%k+1&%k

2 +}
�(%k+1&%k)(sin %k+%k+1&%k),

we have

dk �c9

(ln n)(ln n &rnm &)
n \sin %k+

(ln n)(ln n &rnm&)
n + ,

k=1, 2, ..., n. (4.17)
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If

sin %k�
(ln n)(ln n &rnm&)

n
,

then by (4.14) and (4.17)

d2
k |A1k(x)|�c10 _sin %k(ln n)(ln n &rnm&)

n &
2 n &rnm&

sin %k

�c3

&rnm & ln4[n(1+&rnm&)]
n

.

If

sin %k<
(ln n)(ln n &rnm&)

n
,

then by (4.15) and (4.17)

d2
k |A1k(x)|�c10 _(ln n)(ln n &rnm&)

n &
4

n2 &rnm&

�c3

&rnm& ln8[n(1+&rnm&)]
n2 .

This by (4.16) proves Claim 2.
Now for the proof of (4.9) we have

Rnm(P, x)= } :
m&1

j=1

:
n

k=1

P( j)(xk) Ajk(x)}
� :

m&1

j=1
} :

n

k=1

P( j)(xk) Ajk(x) } := :
m&1

j=1

S j .

We separate the three cases when j=1, j=2, and j�3 (if m=2 then
only the first case can occur).

By the mean value theorem for the derivative it follows from (2.36) and
(4.11) that
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S1 � }P$(x) :
n

k=1

A1k(x) }+ } :
n

k=1

[P$(x)&P$(xk)] A1k(x) }
=|P$(x)| Rnm( f1 , x)+ } :

n

k=1

P"(!k)(x&xk) A1k(x) }
�&P$& Rnm( f1 , x)+&P"& :

n

k=1

(x&xk) A1k(x)�3 &P&* rnm(x).

Similarly, by (2.36), (4.11), and (4.12) we get

} :
n

k=1

A2k(x) }= }12 :
n

k=1

(x&xk)2 A0k(x)& :
n

k=1

(x&xk) A1k(x) }�3rnm(x)

and hence by (2.22) and (4.11)

S2 �&P"& } :
n

k=1

A2k(x)}+&P$$$& :
n

k=1

|(x&xk) A2k(x)|

�&P"& } :
n

k=1

A2k(x) }+2c2 &P$$$& :
n

k=1

(x&xk) A1k(x)

�(3+4c2) &P&* rnm(x).

As for j�3 by (1.5), (2.21), (2.22), and (4.13)

Sj �&P( j)& :
n

k=1

|Ajk(x)|

=&P( j)& _ :
|x&xk| �dk

} 1
j !

(x&xk) j Bjk(x) lk(x)m }+ :
|x&xk|<dk

|Ajk(x)|&
�&P( j)& _ 1

c1 j !
:

|x&xk|�dk

|(x&xk) j B1k(x) lk(x)m|

+c2 :
|x&xk|<dk

d j&1
k |A1k(x)|&

�c11 &P( j)& _ :
|x&xk|�dk

(x&xk) A1k(x)+ :
|x&xk| <dk

d2
k |A1k(x)|&

�c &P&* {rnm(x)+
&rnm& ln10[n(1+&rnm&)]

n = .

The second conclusion directly follows from (4.9). K
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Then according to the Banach theorem we immediately obtain

Theorem 4.2. Let mkn #m be an even integer. Then (4.10) holds for all
f # C[&1, 1] if and only if

&Hnm&=" :
n

k=1

|A0k | "=m(1) (4.18)

and (4.10) holds for f =f i , i=1, 2.

A simple and useful condition of convergence for Hermite�Fejer� -type
interpolation is stated as follows.

Theorem 4.3. Let mkm
#m be an even integer. If (4.18) is true and

lim
n � � " :

n

k=1

|A1k | "=0, (4.19)

then (4.10) holds for all f # C[&1, 1].

Proof. Since (4.20) by (2.22) implies (4.19), Theorem 4.3 follows
according to the following theorem. K

Theorem D [14, Statement 2.1]. Let mkn #m be an even integer. If
(4.18) is true and

lim
n � � " :

m&1

j=1

:
n

k=1

|Ajk | "=0, (4.20)

then (4.10) holds for all f # C[&1, 1].

5. GRU� NWALD-TYPE THEOREMS

In [6] we proved a theorem of Gru� nwald type for Hermite�Feje� r
interpolation of higher order, which is a generalization of [3] given by
Gru� nwald for m=2.

Theorem E [6, Theorem]. Let mkn #m be an even integer. If for fixed
positive numbers \1 and n0

B0k(x)�\1 |Bjk(x)|,
(5.1)

|x|�1, j=1, 2, ..., m&1, k=1, 2, ..., n, n�n0 ,

then (4.10) holds for all f # C[&1, 1].
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Later, Ve� rtesi improved this result:

Theorem F [14, Theorem 2.3]. Let mkn #m be an even integer. Let
I1n(x) and I2n(x) be two disjoint subsets of the set [1, 2, ..., n] with I1n(x) _
I2n(x)=[1, 2, ..., n]. If for fixed positive numbers \2 and n0

B0k(x)�\2 |Bjk(x)|,
(5.2)

|x|�1, j=1, 2, ..., m&1, k # I1n(x), n�n0 ,

and

lim
n � � " :

k # I2n(x)

|x&xk |$ |A0k(x)| "=0, \$>0, (5.3)

" :
k # I2n(x)

|A0k(x)| "�C<�,

lim
n � � " :

k # I2n(x)

|Ajk(x)| "=0, j=1, 2, ..., m&1, (5.4)

" :
k # I2n(x)

|Bjk(x) lk(x)m| "�C, j=1, 2, ..., m&1, (5.5)

then (4.10) holds for all f # C[&1, 1].

Although the conditions of this theorem seem to be complicated, practi-
cally this theorem is useful and convenient by using it the conditions of
convergence of Hermite�Feje� r-type interpolation based on the zeros of the
Jacobi polynomials are derived in [14]. For the related papers we refer to
a good survey paper [15] given recently by Ve� rtesi.

Using Theorem 2.1 in this section we will essentially simplify and
improve Theorems E and F. In view of Theorem 5.1 below it is natural to
renew the definition of \-normality (in [6] we defined it by (5.1)).

Defintion. Let mkn #m be an even integer. X is said to be \-normal if
for fixed positive numbers \ and n0

B0k(x)�\B1k(x), |x|�1, k=1, 2, ..., n, n�n0 . (5.6)

The main result of this section is as follows.
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Theorem 5.1. Let mkn #m be an even integer. Let I1n(x) and I2n(x) be
two disjoint subsets of the set [1, 2, ..., n] with I1n(x) _ I2n(x)=[1, 2, ..., n].
If for fixed positive numbers \ and n0

B0k(x)�\B1k(x), |x|�1, k # I1n(x), n�n0 , (5.7)

and

lim
n � � " :

k # I2n(x)

|x&xk | |A0k(x)|"=0, (5.8)

" :
k # I2n(x)

|A0k(x)| "�C<�, (5.9)

lim
n � � " :

k # I2n(x)

|A1k(x)| "=0, (5.10)

" :
k # I2n(x)

B1k(x) lk(x)m"�C, (5.11)

then (4.10) holds for all f # C[&1, 1].

As a special case of Theorem 5.2 (I2n(x)#<) we state the second main
result.

Corollary 5.1. Let mkn #m be an even integer. If X is \-normal then
(4.10) holds for all f # C[&1, 1].

Let

2n(x) :=
(1&x2)1�2

n
+

1
n2

and x0=1, xn+1=&1, xk=cos %k , k=0, 1, ..., n+1.

Lemma 5.1. If

%k+1&%k�
c2

n
, k=1, 2, ..., n&1, (5.12)

and

%k+1&%k�
c3

n
, k=0, 1, ..., n, (5.13)
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then

|x&&xk |t
|&&k| min[&+k, 2n+2&&&k]

n2 ,

&{k, 1�&, k�n, (5.14)

|xk&xk+1|t
min[k, n&k]

n2 t2n(xk), k=1, 2, ..., n&1, (5.15)

and

dk t
min[k, n+1&k]

n2 t2n(xk), k=1, 2, ..., n. (5.16)

Proof. First, clearly (5.12) and (5.13) imply

|%&&%k |t
|&&k|

n
. (5.17)

On the other hand, by (5.13)

%&+%k=%&&%0+%k&%0�
c3(&+k)

n

and by (5.12)

%&+%k�%&&%1+%k&%1�
c2(&+k&2)

n
�

c2(&+k)
3n

,

since &{k and hence &+k�3. That is

%&+%k t
&+k

n
. (5.18)

Similarly we have

2?&%&&%k=2%n+1&%&&%k t
2n+2&&&k

n
. (5.19)
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Thus (5.14) may be obtained from (5.17)�(5.19) and the following three
relations:

|x&&xk |=|cos %&&cos %k |= }2 sin
%&+%k

2
sin

%&&%k

2 } ,
sin

%&&%k

2
t |%&&%k |,

sin
%&+%k

2
t{%&+%k ,

2?&%&&%k ,
&+k�n,
&+k>n.

Next, the first relation in (5.15) follows from (5.14). The second one
follows from the relations:

2n(xk)=
sin %k

n
+

1
n2t

min[%k , ?&%k]
n

+
1
n2t

min[k, n+1&k]
n2 .

Finally, (5.16) is a direct consequence of (5.15). K

Lemma 5.2. Let mkn #m be even. If (5.12), (5.13), and

|l$k(xk)|=m(1) 2n(xk)&1, k=1, 2, ..., n, (5.20)

hold, then

|bik |=m(1) 2n(xk)&i, k=1, 2, ..., n, i=0, 1, ..., (5.21)

and

bik t2n(xn)&i, k=1, 2, ..., n, i=0, 2, 4, .... (5.22)

Furthermore, if m& p is odd then

Bpk(x)�c4 |Bik(x)|, x # R, p<i�m&1, 1�k�n. (5.23)

Moreover, if we replace 2n(xk) by (1&x2
k)1�2�n and (5.12) by

%k+1&%k�
c2

n
, k=0, 1, ..., n, (5.24)

then the above conclusions remain true.
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Proof. First let us prove the first part of the lemma. Assume without
loss of generality that k�n�2. Then for i�2 by (5.14) and (5.15)

|aik |=m(1) :
&{k \

n2

|&&k| min[&+k, 2n+2&&&k]+
i

=m(1) _ :
&�3n�4, &{k \

n2

k |&&k|+
i

+ :
&>3n�4 \

n2

k(2n+2&&&k)+
i

&
=m(1) \n2

k +
i

=m(1) 2n(xk)&i.

Since a1k=&l$k(xk), we have by (5.20)

|aik |=m(1) 2n(xk)&i, k=1, 2, ..., n, i=1, 2, ...,

which coupled with (2.20) gives (5.21).
On the other hand, by (1.4), (2.21), and (5.16) for even i

bik�cd &i
k t2n(xk)&i,

which coupled with (5.21) yields (5.22).
Let us prove (5.23). According to (5.21) and (5.16) we can conclude that,

assuming without loss of generality c5�1,

|b&k |�c5 d &&
k , &=0, 1, ..., m&1, k=1, 2, ..., n. (5.25)

Choose h=1�(2mc5). We distinguish two cases.

Case 1. |x&xk |�hdk . In this case by (2.21)

Bpk(x)�chi& p |Bik(x)|�chm&1 |bik(x)|.

Case 2. |x&xk |<hdk . In this case by (1.4) and (5.25)

Bpk(x)�1& } :
m& p&1

&=1

b&k(x&xk)& }�1&c5 :
m& p&1

&=1

h&�1&mhc5= 1
2

and

Bik(x)�1+ } :
m&i&1

&=1

b&k(x&xk)& }�1+c5 :
m&i&1

&=1

h&�1+mhc5= 3
2 .

Thus in this case Bpk(x)� 1
3 |Bik(x)|.

Then (5.23) follows if we put c4=min[chm&1, 1
3].
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Next, to prove the second part of the lemma we note that in this case

2n(xk)t
(1&x2

k)1�2

n
, k=1, 2, ..., n.

Hence the conclusions follow. K

Remark 5.1. In general the condition (5.20) in Lemma 5.2 cannot be
dropped. For example put n=2r&1(r�2) and

%r =
?
3

, %r&k=\1
3

&
k
3r+ ?,

%r+k=\1
3

+
2k
3r+ ?, k=1, 2, ..., r&1.

Although (5.13) and (5.24) hold, by an elementary calculation we can get

b1r=ma1r=&ml$r(xr)�c62n(xr)
&1 ln n.

Lemma 5.3. If for !=cos {, { # [0, {],

min
0�k�n+1

|{&%k |�d max
0�k�n

(%k+1&%k), d>0, (5.26)

then

|!&xk |�
d 2

16
dk , k=1, 2, ..., n. (5.27)

Proof. It is easy to check that

sin %�%, 0�%�?; sin %�
%
4

, 0�%�
3?
4

. (5.28)

Now suppose without loss of generality that {�?�2 (The case {>?�2 leads
to entirely analogous, symmetric discussion). Let k, 1�k�n, be fixed.
Then by (5.28)

|!&xk |= |cos {&cos %k |= } 2 sin
{+%k

2
sin

{&%k

2 }� 1
32

|{2&%2
k |

(5.29)
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and

|xk+1&xk |=|cos %k+1&cos %k |

= } 2 sin
%k+1+%k

2
sin

%k+1&%k

2 }�1
2

(%2
k+1&%2

k). (5.30)

Clearly by (5.26)

|{&%k |�d |%k&%k&1|, |{&%k |�d |%k&%k+1|.

Again by (5.26) we get d�1�2 and hence

%k+1&%k�
{&%0

d
�

{+(1&2d ) %k

d
=

{+%k

d
&2%k ,

which implies

{+%k�d(%k+%k+1)�d(%k+%k&1).

To sum up by (5.29) and (5.30)

|!&xk |�
1

32
|{2&%2

k |�
d 2

32
max[ |%2

k&%2
k&1 |, |%2

k&%2
k+1 |]

�
d 2

16
max[ |xk&xk&1|, |xk&xk+1|]�

d 2

16
dk . K

Following the line of the proof of Theorem 1 in [1] given by Erdo� s and
Tura� n we can prove

Lemma 5.4. Let mkn #m be even. If m& j is odd and

|Bjk(x) lk(x)m|�c8 , x # [&1, 1], k=1, 2, ..., n, n=1, 2, ..., (5.31)

then (5.12), (5.13), and (5.20)�(5.23) hold.

Proof. By Lemma 5.2 it suffices to show (5.12), (5.13), and (5.20).
First by Rolle's theorem and the Bernstein inequality for 1�k�n&1

1
|%k+1&%k |

= }Bjk(cos %k) lk(cos %k)m&Bjk(cos %k+1) lk(cos %k+1)m

%k&%k+1 }
= }d[Bjk(cos %) lk(cos %)m]

d% } %=%$

�c9(mn&1),

which is equivalent to (5.12).
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Next let us prove (5.13). Using the same argument as that of Theorem 1
in [1] let

max
0�k�n

(%k+1&%k)=%r+1&%r=
2c2Dn*

n

and

{=
%r+1+%r

2
, !=cos {, (5.32)

where c2 is given in (5.12). To prove (5.13) it is enough to show

Dn*�c10 . (5.33)

To this end put

,(%)=
1
n2 \

sin n
%+{

2

sin
%+{

2 +
2

+
1
n2 \

sin n
%&{

2

sin
%&{

2 +
2

. (5.34)

In [1, (23), (25), and (26)] it is proved that

,({)�1, (5.35)

|,(%)|�
9?2

2n2 _ 1
(%+{)2+

1
(%&{)2& , (5.36)

and

,(%)# :
n

k=1

,(%k) lk(cos %). (5.37)

By Lemma 5.3 it follows from (5.32) that (d=1�2)

|!&xk |�
dk

64
, k=1, 2, ..., n. (5.38)

Then noting that Bm&1, k(x)#1 and using (5.31), (2.21), and (5.38) we get

c8�|Bjk(!) lk(!)m|�c } !&xk

dk }
m& j&1

|lk(!)m|�
c

(64)m& j&1 |lk(!)m|
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and hence

|lk(!)|�c11 , k=1, 2, ..., n, n=1, 2, ... . (5.39)

By virtue of (5.35)�(5.37) and (5.39) (see [1, (27)])

1�,({)= :
n

k=1

,(%k) lk(cos {)

�
9?2

2n2 c11 :
n

k=1
_ 1

(%k+{)2+
1

(%k&{)2& :=
9c11?2

2n2 S. (5.40)

In [1, (29a) and (29b)] it is shown that

S�
3
c2

2

}
n2

Dn*&1
,

which together with (5.40) gives (5.33).
Finally to prove (5.20) by (2.21) and (5.31) we obtain

|(x&xk)m& j&1 lk(x)m|�
c8

c
dm& j&1

k .

By the Markov inequality [4, (3.4), p. xxix] and (5.16)

|[(x&xk)m& j&1 lk(x)m] (m& j)
x=xk

|=m(1) dm& j&1
k 2n(xk) j&m

=m(1) 2n(xk)&1.

Applying the Newton�Leibniz rule the above relation becomes

|l$k(xk)|=m(1) 2n(xk)&1,

which proves (5.20). K

Remark 5.2. I believe that Lemma 5.4 remains true even if m& j is
even. That is the following

Conjecture 5.1. Let mkn #m be even. If m& j is even and (5.31) is true
then (5.12), (5.13), and (5.20)�(5.23) hold.

Up to now we know that this conjecture is true for the case when m=2
and j=0. In fact, in this case (5.12) and (5.13) can be found in [1, Sec. 4].
To prove (5.20) we note that (5.31) implies by the Markov inequality

|[B0k(x) lk(x)2]"x=xk
|=m(1) 2n(xk)&2.
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Since B0k(x)=1&2l$k(xk)(x&xk), using (2.54) we obtain

|[B0k(x) lk(x)2]"x=xk
|=2[3l$k(xk)2&l"k(xk)]�4l$k(xk)2.

Hence (5.20) follows.
As an immediate consequence of Lemma 5.4 we state

Corollary 5.2. Let mkn #m be even. If m& j is odd and

:
n

k=1

|Bjk(x) lk(x)m|=m(1), (5.41)

then

:
n

k=1

|B ik(x) lk(x)m|=m(1), j<i�m&1. (5.42)

Proof of Theorem 5.1. Using the identity �n
k=1 A0k(x)#1 it follows

from (5.7) and (5.9) that

:
k # I1n(x)

B1k(x) lk(x)m�
1
\

:
k # I1n(x)

B0k(x) lk(x)m=
1
\

:
k # I1n(x)

A0k(x)

=
1
\ _1& :

k # I2n(x)

A0k(x)&�
1+M

\
,

which coupled with (5.11) yields

:
n

k=1

B1k(x) lk(x)m�
1+M

\
+M.

Applying Lemma 5.4 it follows from (5.23) that

B1k(x)�c4 |Bik(x)|, x # R, 2�i�m&1, 1�k�n.

Using this inequality (5.7) and (5.11) imply (5.2) and (5.5), respectively.
Meanwhile, (5.10) by (2.22) implies (5.4). On the other hand, using
Ho� lder's inequality (5.3) follows from (5.8) and (5.9). Thus all the assump-
tions of Theorem F are satisfied and we can apply Theorem F to conclude
that (4.10) holds for all f # C[&1, 1]. K
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